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ABSTRACT. In this paper we exploit the relations between near polygons with lines of size 3 and
Fischer spaces to classify near hexagons with quads and with lines of size three. We also
construct some infinite families of near polygons.

1. NEAR POLYGONS

A near polygon is a connected partial linear space (X, L) such that given a
point x and a line L there is a unique point on L closest to x (where distances
are measured in the collinearity graph: two distinct points are adjacent when
they are collinear). A near polygon of diameter n is called a near 2n-gon, and
for n = 3 a near hexagon. The concept of near polygon was introduced in
Shult and Yanushka [20] as a tool in the study of systems of lines in a
Euclidean space. A structure theory is developed in Shad and Shult [18] and
Brouwer and Wilbrink [8]. Dual polar spaces were characterized by
Cameron [11] as near polygons with ‘classical point-quad relations’. (See also
Shult [19] and Brouwer and Cohen [5].)

By Yanushka’s lemma ({20, Prop. 2.5]), any quadrangle (in the collinearity
graph of a near polygon) of which at least one side lies on a line with at least
three points is contained in a unique geodetically closed subspace of diameter
2, necessarily a nondegenerate generalized quadrangle. Such a subspace is
called a quad, and a near polygon is said to ‘have quads’ when any two points
at distance 2 determine a quad containing them. When all lines have at least
three points this is equivalent to asking that any two points at distance 2 have
at least two common neighbours.

In this paper we construct some infinite families of near polygons, and
classify near hexagons with lines of length 3 and with quads. This paper is a
compilation of the three reports Brouwer et al. [6], Brouwer and Wilbrink
[7], and Brouwer [4] together with the contributions of the third author, who
was referee of [6].

Our main goal is the following theorem.

1.1. THEOREM. Let (X, L) be a near hexagon with lines of size 3 and such
that any two points at distance 2 have at least two common neighbours. Then
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(X, L) is finite, and is one of the eleven near hexagons with parameters as given
below.

v t+1 t,+1 NPdim Udim Group

@ 759 15 3 22 23 M,,
@@ 729 12 2 24 24 362.M,,
(i) 891 21 5 20 22 PI'U(6,2%)
(iv) 567 15 3,5 20 21 PO¢(3)
(v) 405 12 2,3,5 20 20 3%.Sym(6)
(viy 243 9 2,5 18 18 (Z;xAGL(2,3)xAGL(2,3)).2
(vi) 81 6 2,5 12 12 PI'U(4,22) x Sym(3)
(viii)y 135 7 3 8 15 PO,(2)
ix) 105 6 2,3 8 14 Sym(8)
) 45 4 2,3 8 10 Sym(6) x Sym(3)
(xi) 27 3 2 8 8 Sym(3)wr Sym(3)

Here v = | X], the number of points; t + 1 is the number of lines on each point;
and ¢, + 1 is the number of common neighbours of two points at distance 2
(this need not be constant). The columns headed “NPdim’ and ‘Udim’ give the
near-polygon embedding dimension and the universal embedding dimension.
(The near-polygon embedding dimension of a near 2n-gon with lines of size 3
is the 2-rank of the 0-1 matrix A, with (4,),, = 1 when x and y have distance
n. The universal embedding dimension is v minus the 2-rank of the point—line
incidence matrix. See also Ronan [16].)

A near polygon is called regular when its collinearity graph is distance-
regular. Shult and Yanushka [20] classified the finite regular near hexagons
with lines of size 3, and found that these either are generalized hexagons, or
must have parameters as in (i)~(iii), (viii) or (xi). Moreover, they showed that
there are unique examples with parameters (iii), (viif) and (xi). Uniqueness of
the remaining two finite regular near hexagons was shown in Brouwer [2],
[3] (they are obtained from the Steiner system S5(5,8,24) and from the
extended ternary Golay code). The near hexagon (iv) on 567 vertices was first
described in Aschbacher [1]; see also Kantor [14].

Given a collection (X;, L,XieI) of near polygons, we can form their direct
product (cf. [8]) with point set X =TI, X; and as lines all subsets of X
projecting to a single point in X for all i # i, and projecting in X;, onto an
element of L, (for some i, el). Thus, the unique generalized quadrangle of
order (s, 1) is the direct product of two lines of size s + 1. Examples (vii), (x)
and (xi) are direct products of a quad and a line (so that (xi) is the direct
product of three lines).

In the above theorem it is really necessary to require ‘with quads’. On the
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one hand, even for generalized hexagons with lines of size 3 it is a famous
open problem whether there can be any infinite examples. On the other hand,
many ‘degenerate’ examples can be obtained by pasting together some lines
and quads.

[Maybe a reasonable definition of ‘degenerate’ in this context is: becoming
disconnected by the removal of a proper subspace. When (X, L;){i = 1,2) are
two near polygons meeting in a common proper subspace that is classical in
both (cf. below), then (X, U X,,L; UL,) is again a near polygon, and is
degenerate in the above sense. In particular this holds when X, n X, is a
point or a line. This construction can be extended to arbitrary families of near
polygons.]

We shall talk about n-things, meaning things of cardinality n (as in n-sets, n-
cliques, n-lines, n-quads, etc.).

2. FISCHER SPACES
A Fischer space is a linear space (E,L) such that

(i) all lines have size 2 or 3, and

(i) for any point x the map o,: E — E fixing x and all lines through x and
interchanging the two points distinct from x on a line of size 3 through
x is an automorphism.

One can show that ¢,0, has order 2 or 3 whenever the line xy has size 2 or 3
(respectively). Alternatively, one may define Fischer spaces as partial linear
spaces (E, M) such that all lines have size 3, and such that any two intersecting
lines determine a subspace isomorphic either to the unique Fischer space F¢
with six points and four 3-lines, or to the affine plane AG(2,3) with nine
points and twelve 3-lines. The connected components of a Fischer space are
the connected components of the collinearity graph of this partial linear
space. For more details on Fischer spaces, see Buekenhout [9]. In the
following two sections we show how to obtain near polygons from Fischer
spaces, and conversely Fischer spaces from near polygons.

3. NEAR POLYGONS FROM FISCHER SUBSPACES OF POLAR SPACES

Let (X, L) be a polar space of rank at least 2. For x € X we write x* for the set
of all points collinear with x. If we let X* be the set of maximal totally
isotropic subspaces and L* the set of subspaces of codimension 1 of the
elements of X*, then (X* L*) (with containment as incidence) is a near
polygon (‘dual polar space’).
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Let A < X and define a* = {MeX*|ae M} for ae X and 4* = | ., a*.
The set A* has a graph structure induced by the collinearity graph of
(X*, L*).

3.1. LEMMA. A* preserves distances, that is, two points of A* have the same
distance in A* as in X*,

Proof. Let M, N € A* If for some ac 4 we have M, N € a*, then (since a* is
a geodetically closed subspace of X*) all geodesics (shortest paths) of X*
between M and N lie already in A*. Otherwise, choose ae 4 " M and let
K = {a,a* n N), the smallest subspace containing a and a* N N. Then
K ea* and K is adjacent to N, so that there is a geodesic in X* from M to N
over K, and this geodesic is in 4*. 0

If A* is a subspace of X* (i.e. if A* contains all elements of X* on an element
of L* as soon as it contains two of them), then A* is itself a near polygon. If
our polar space is of type O7,(q), then every subset of X* is a subspace (since
lines have size 2). If (X, L) is of type Sp(2m, g) or U(2m, ¢*), then sufficient in
order that A* be a subspace is the condition

™) If a and a' are two points of A, noncollinear in (X,L), then the
hyperbolic line {a,a’'}** is contained in A.

Easy examples of sets A satisfying this condition are the intersections with X
of subspaces of the projective space in which (X, L) is embedded, or arbitrary
subsets of a totally isotropic subspace. Note that the resulting near polygons
do not necessarily have quads.

As a special case, if (X, L) is the Sp(2d, 2) or U(2d,2?) polar space, then X
carries in a natural way the structure of a Fischer space (with the hyperbolic
lines as lines of size 3, and the orthogonal pairs as lines of size 2) and we find
near polygons 4A* for each Fischer subspace 4 of the Fischer space on X. In
particular, Fischer subspaces of size 3 (a hyperbolic line), 18 (two orthogonal
nondegenerate planes), 45 (points of weight 2 for the standard form
{(x, ) = Zx;y?) and 126 of U(6,2%) yield near hexagons on 81, 243, 405 and
567 points, respectively. (For a discussion of the last case, cf. Kantor [13,
p. 500].) Similarly, Fischer subspaces of size 3 (a hyperbolic line) and 28 (the
complement of a hyperbolic quadric) in Sp(6,2) yield near hexagons on 45
and 105 points. Thus, we find the examples (iv)—(vi]) and (ix)—(x) of the
theorem.

More generally, the complement of a hyperbolic quadric in Sp(2d, 2) yields
a near 2d-gon with quads (the quads being of types GQ(2,1) and GQ(2,2))
and with t + 1 = 2¢ — 2 lines on each point. An equivalent description of this
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near polygon is obtained by fixing a hyperbolic hyperplane H in O(2d + 1,2)
and then taking the subspace of the corresponding dual polar space on the
maximal totally singular subspaces not contained in H.

Note that all near polygons found in the conclusion of our theorem are
subspaces of the U(6,2%) dual polar space, except for the examples (i) and (ii)
associated with the Mathieu groups. Indeed, the Sp(6, 2) dual polar spaceis a
subspace of the U(6,2?) dual polar space, and example (xi) is obtained as the
collection of all 27 maximal totally isotropic subspaces meeting each of three
mutually orthogonal hyperbolic lines.

4. FISCHER SPACES FROM NEAR POLYGONS WITH BIG SUBSPACES

A geodetically closed proper subspace Y of a near polygon (X, L) with the
property that each point of X has distance at most 1 to Y is called a big
subspace of X. [Note that in the near polygons A* constructed in the previous
section, the sets a* are big subspaces.] If Y is a geodetically closed subspace of
(X, L), and x € X, then nx = 7, x denotes the unique point in Y closest to x, if
such a point exists; = is called the projection onto Y. Since Y is geodetically
closed and X does not contain triangles of lines, nx is defined when
d(x, Y) < 1(and hence for arbitrary x when Y is big). The subspace Y is called
classical when zx is defined for all x. Let us use ~ to denote collinearity.

4.1. LEMMA. Let (X, L) be a near polygon, let Y be a big subspace, and let L
be a line disjoint from Y. Then L is a line, if = denotes the projection onto Y.

Proof. Let a,be L. Since Y is geodetically closed,and ta~a ~ b ~ nbisa
path connecting za and nb, we have d(na, nb) < 2. Now =a has distance at
most 2 to both b and b so is adjacent to a point of the line b b, which must
be nb. This shows that =L is a clique, hence contained in a line L' in ¥, but
since each point of L' has distance at most 2 to g and b, it follows that
L' ==nL. O

4.2. LEMMA. Let (X, L) be a near polygon, and let Y and Z be geodetically
closed subspaces with Y N Z # . Then any line meeting both Y and Z also
meets Y N Z. In particular, if Z is a big subspace of X, then YN Z is a big
subspace of Y.

Proof. Let L =yz be a line with LAY = {y}, LnZ = {z}, y # 2z Let
xeYnZ Leti=d(x,y),j=dx, z). If i =j, then there is a point we L with
d(x,w) =i — 1, and by geodetic closure of Y and Z we find we Y 1 Z, so we
are done. Thus we may assume j = i — 1. But now again by geodetic closure
zeY. O



354 A. E. BROUWER ET AL.

4.3. PROPOSITION. Let (X, L) be a near polygon with lines of size 3. For
any big subspace Y define an involution ¢y by

oy(x) = {x if xe¥,

z i {x, y, z} is a line meeting Y in y.

Then oy is well defined and an automorphism of X. If Y and Z are two big
subspaces then

(i} if Y meets Z then oy and o, commute;

() if YNZ = J, then W = 0y(Z) = a,(Y) is a third big subspace, and
Ow = GyGz0y = G0y0 .

Proof. o = oy is well defined since Y is geodetically closed. We have to
show that ¢ preserves lines. This is clear for lines meeting ¥, solet L = {a, b, c}
be a line disjoint from Y. The point o{a} is adjacent to some point of the line
b n(b) (by the near polygon property and 4.1), and since this line has only
three points we find a{a) ~ o(b). Thus o{L) is a line and ¢ is an automorphism.
If Y’ is another big subspace, then if Y~ Y # ¢ we see from the above
lemma that ¢ leaves Y’ invariant and hence commutes with ¢, If
YAY = @, then Y = o Y')is disjoint from both Yand Y,and Yu Y U Y”
is isomorphic to the direct product L x ¥, where L is a 3-line. O

44. COROLLARY. Let (X, L) be a near polygon with lines of size 3. Let E be
the collection of big subspaces of X, and let Ly be the collection of subsets
{Y,Z,0¢(2)} of E. Then (E, Lg) is a Fischer space. |

4.5. LEMMA. Let Y be a big subspace of a near polygon (X, L) with quads
such that every quad meeting Y is the direct product of two lines. Then
X = Y xL for some line L.

Proof. If ax = nx’ for two nonadjacent points x, X', then the quad on the
lines x nx and x’ zx meets Y in one point only, contradiction. Thus, for ye Y
we sec that = '(y) is a line L,. For y,zeY we have a natural 1-1
correspondence ¢} between L, and L, sending each point on one line to the
closest point on the other line. (Indeed, if d(y,z) = i, and aeL,, then since
quads exist there is a point be L, with d{a, b) < i. Now since Y is geodetically
closed, the lines L, and L, must be parallel (cf. [8]).) Furthermore, if y, z,we Y
and y ~ z, then ¢%, 207 = o?,. It follows that we have a direct product. []

5. A FAMILY OF EXAMPLES WITH GROUP Sym (2n)

Let I' = T(2n) be the complement of the triangular graph T(2n). (Thatis, I' is
the graph with point set (), the unordered pairs from a 2n-set, two pairs
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being adjacent when they are disjoint, ie. the commuting graph on the
transpositions of Sym (2n), i.e. the Fischér space Sym(2n) together with its 2-
lines.) We find a geometry of rank n — 1 with Buekenhout-Tits diagram

°: 02 > 03 04 . 05"61
2 2 1 1 1 1

by taking as i-objects of our geometry the (n—i)<liques in
I'(i=0,23,...,n—1). We call 0-objects points and 2-objects lines. We shall
show that the points and lines are the points and lines of a near polygon.

5.1. LEMMA. Let x and y be two points. The distance d(x, y) of x and y in the
collinearity graph on the points is n — m, where m is the number of connected
components of x U y regarded as a 2-factor of the complete graph K ,,,.
Proof. Points are n-cliques in the graph '—I‘-(2_nj, i.e. are partitions of a 2n-set
into pairs, i.e. are complete matchings of the complete graph K,,. The union
of two such matchings is a bipartite graph of valency 2 on 2n vertices and
hence a union of 2k-circuits (here k=1 is allowed). The claim of the lemma is
that each such component contributes k — 1 to the distance d(x, y). The proof
is by induction on d(x, y): If d(x, y) = 0 then our claim is true. Otherwise, let z
be a neighbour of y such that d(x, z) = d(x, y) — 1. By induction we know that
x L z has precisely n — d(x, z) components, and since y and z are collinear
they have n — 2 pairs in common, so that y is obtained from z by replacing
two pairs by two other pairs, covering the same four points. Clearly this can
change the number of components by at most 1 so that x U y has at least
n — d(x, y) components. But conversely, we have d(x, y) < n — m since given
a 2k-circuit --- ~p~ g ~r~s~ --- with pg and rs in y and gr in x, we can
find a neighbour z of y containing ps and gr, so that x Uz has one more
component than x U y. |

5.2. PROPOSITION. (X, L) = (0-objects, 2-objects) is a near 2(n — 1)-gon.

Proof. Given aline L (i.e. a partial matching consisting of n — 2 edges) and
a point x (i.e. a complete matching), consider x U L. This is a graph consisting
of a number of closed circuits and two paths beginning and ending in a point
not covered by L. There is a unique way of completing these two paths to two
circuits, so there is a unique point on L closest to x. The diameter follows
from the above lemma: d(x, ) is maximal (and equals n — 1) when xu y is
connected, a 2n-circuit. O

This near polygon (let us call it H,_,) has three points on each line, () lines
on each point, and the i-objects are geodetically closed sub near 2(i — 1)-gons
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{i=23,...,n - 1) In particular, the 3-objects are generalized quadrangles of
order 2. Not any two lines on a point determine a unique 3-object, but they
do determine a unique quad: they determine a GQ(2, 2) quad whenever they
have n — 3 pairs in common, and a GQ(2, 1) quad (the direct product of two
lines) otherwise,

More generally, every two points x, y at distance j determine a unique
geodetically closed sub 2j-gon Hix, y) if x Uy is the union | J,C,,, of 2k-
circuits, then H(x, y) is the direct product I1, H, _, of sub near 2(k; — 1}-gons
H, ., which are k-objects of the geometry (where l-objects are identified
with O-objects). The full geometry (with geodetically closed sub 2j-gons as
objects (j = 0, 1,....n — 2)) has Buekenhout-Tits diagram

The derived geometry at a point is the geometry of subsets of an n-set.

For n = 4 we find example (ix) from the theorem again.

The near polygon H, , has a distance-preserving embedding in the
Sp(2n — 2,2) dual polar space. [Indeed, consider the Sp(2n,2) polar space
defined on the vector space V over F, with basis {e;/1 <i < 2n} by the
symplectic form (x, y) = £, x,y,for x = Zx;e; and y = L y,e;. Let e:= L g,
and let ¢:I" — V map the pair {i, j} to the weight two vector e, + ;. Then ¢
determines a map ¢ from the set of objects of the above geometry into the set
of totally isotropic subspaces of the Sp(2n — 2,2) polar space on W = e*/(e)
{with the form inherited from V), sending the clique C to {e, §{z)|ze C)/{eD.
One checks immediately that ¢ is a distance-preserving embedding of H,, _,
into the Sp(2r — 2,2} dual polar space on W, For n < 3 this embedding is
onto, i.c. an isomorphism. For n = 4 the image of H; in the Sp(6, 2) dual polar
space consists of the 105 totally isotropic but not totally singular planes, for
the quadratic form Q(x) = % wi(x).]

6. THE ASCHRACHER NEAR HEXAGON

Let us describe the near hexagon on 567 points in somewhat greater detail.
Let V be a vector space of dimension 6 over F; equipped with a nondegen-
crate quadratic form Q of Witt index 2. Let N be the set of 126 projective
points of norm 1. The points and lines of the near hexagon are the 6-tuples
and pairs, respectively, of mutually orthogonal points in N, with inclusion as
incidence. Each line has size 3, and there are (3) = 15 lines on each point. Any
two points at distance 2 determine a unique quad. The 126 27-quads are the
points of N. The 56715-quads correspond to the 6-tuples of mutually
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orthogonal points in N, the set of 126 projective points of norm 2. Each such
6-tuple B' in N’ determines 15 elliptic lines that meet N in 15 pairs of points
(the lines of the 15-quad) and any partition of B into three pairs yields three
pairs in N whose union is a point of the 15-quad. Points, hines and 15-guads
yield a Buekenhout geometry with diagram

(00 ——0]
2 2 2
567 2835 567

and the group PO, (3) has an outer automorphism interchanging N and N',
yiclding a polarity of this geometry. (For more details, see Kantor {147].) The
27-quads are big quads, and the corresponding Fischer space is the linear
space induced on N by the lines of PG(S, 3. the elliptic lines become 2-lines
and the tangents become 3-lines.

7. CLASSIFICATION

Let {X, L) be a near hexagon with lines of size 3 and such that any two points
at distance 2 have at least two common neighbours. Then, by Yanushka’s
lemma, any two points at distance 2, or any two intersecting lines, determine
a unique quad, necessarily one of GQ(2, 1), GQ(2,2) and GQ(2, 4) (Seidel
[17], Cameron {10]).

Finiteness

Ovur first concern is proving that (X, L) is finite. By Lemma 19 of [8] we find
that each point is on the same number ¢ + 1 of lines, and since the collinearity
graph I" of (X, L) has finite diameter and lines have finite size, finiteness of X
is equivalent to finiteness of ¢ + 1.

For 4 € X, let us write I';(4) for the set of points at distance i from 4 in I,
(And I'j{@) = I'({a}) for ae X )

We show finiteness by mimicking the reasoning in Cameron’s classification
of generalized quadrangles with lines of size three.

7.1. PROPOSITION. Every near hexagon with quads and with lines of size 3
is finite,

Proof. Fix a point xe X, and label the remaining two points on each line
on x arbitrarily with O and 1. This labelling induces a labelling of the vertices
in I 3{x) with 0—1 vectors indexed by the lines on x: for ze [";{x) its label Z has
L-coordinate b when the point I'j{z) n L has label . Now if y and z are
adjacent points in ["y(x), then ¥ and Z have different L coordinates for all L
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except for the finitely many lines L in the quad {x, w> where w is the third
point of the line yz.

Now if t + 1 is infinite, it follows that I"y(x) has infinite diameter: starting
from y we can walk away, and after an odd number of steps all but a finite
number of coordinates will have changed, while after an even number of steps
all but a finite number of coordinates will be the same again; now while
walking in I';(x) we can make the size of this finite exceptional set increase on
each step, but after finitely many (say s) steps our exceptional set has size
bounded by 5s, so that our walk brings us arbitrarily far away from y in I'5(x).

On the other hand, I';(x) has finite diameter: Let y, ze[(x). If d(y,2) =2
in I, then consider the quad Q = <y, z>. Now Q n [';(x) is either Q with an
ovoid removed, or Q with all lines on a fixed point removed, and in any case is
connected of diameter at most 3. Thus y and z have at most distance 3 in
[3(x). Andif d(y, z) = 3, thenlet M be a line on y, and we M, d(w, z) = 2. Now
{w, z) N I'3(x) contains a common neighbour of w and z, so that y and z have

at most distance 4 in I'5(x).
It follows that ¢ + 1 is finite. 0

Local Spaces and Quads

Let (X, L) be a near hexagon with quads, and let x € X. The collection of lines
and quads on x forms the collection of Points and Lines of a linear space,
called the local space L,. Since a big quad never meets another quad in a
single point, it follows that the Line corresponding to a big quad in L, meets
all other Lines in that local space.

Suppose that @ is a quad and that I',(Q) contains a point x. By [20, Prop.
2.6], the set O, = Q@ N T',(x) is an ovoid in Q. On the other hand, GQ(2,4)
does not have ovoids (e.g. because no GQ(s, s?) has ovoids, ¢f. Payne and
Thas [15, 1.8.3]). This shows

(1) Every quad of type GQ(2,4) is big.

If I',{Q) contains a line L, then we find a partition of Q into ovoids O, for
x € L. On the other hand, GQ(2, 2) does not possess partitions into ovoids (it
has six ovoids, and any two of them meet in a point). Thus:

(2) For a quad Q of type GQ(2,2) the set I'5(Q) does not contain lines.
{That is, Q L I',(Q) is a geometric hyperplane.)
(3) If(X, L) has a quad of type GQ(2,2) that is not big, then 10 < t + 1 < 15.

[Indeed, let x € T'5(Q), where Q is a GQ(2, 2). Then each of the ¢t + 1 lines on
x lies in precisely one of the five quads {x, z) spanned by x and a point z€ O,.
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And these quads each have two or three lines on x. (Not five, since these
quads meet Q in a single point and therefore cannot be big by Lemma 4.2.)]

(4) Suppose that (X,L) has a quad Q of type GQ(2,t,), and put v = |X|,
q =1|Q|. Then v > q + 24(t — t,) with equality if and only if Q is big. In
particular, if one quad of type GQ(2, t,) is big, then all are.

[Indeed, let Q be a quad of type GQ(2, t,). Counting the neighbours of all
points of @ we find v > g + 2¢(t — t,) with equality when Q is big.]

7.2. LEMMA. If(X, L) contains a quad Q of type GQ(2,t,), thent =, + 1,
with equality if and only if (X, L) is the direct product of Q with a line, i.e. if and
only if we are in case (vii) or (x) or (xi) of the theorem.

Proof. Since X is connected and has diameter 3, some point of @ is on a
line not contained in Q, so that ¢t > ¢, + 1. In case of equality, Lemma 4.5 tells
us that we have a direct product. O

7.3. LEMMA. Suppose that (X,L) has a big quad Q of type GQ(2, t,). If no
larger quads occur, thent + 1 < 13 + t, + 1, with equality if and only if (X, L)
is a classical dual polar space, i.e. if and only if we are in case (iii) or (viii) or (xi).
Proof. Let L be a line meeting Q in a point z and choose x e L\{z}. The ¢
lines on x distinct from L lie in the ¢, + 1 quads on L, and each quad
contributes at most t, to the total number of lines. In case of equality, all
quads meeting a big quad are again big (by (4)), and we have a regular near
hexagon, i.e. case (iii) or (viii) or (xi) (by Shult and Yanushka’s classification).
|

Now the classification will proceed as follows. Shult and Yanushka did the
regular case, so we may assume that quads of different types occur. The three
main cases are: (i) a 27-quad occurs (necessarily as a big quad); (i) a 15-quad
occurs as a big quad; and (iii) a 15-quad occurs as a non-big quad. We start
with case (ii).

Big 15-Quads

Suppose that (X, L) has no 27-quads, but does have a big 15-quad. By the
above we may assume that t + 1e{5,6}. If t + 1 = 5, then v = 75 and all
local spaces L, have two 3-lines and four 2-lines, so that the total number of
quads of type GQ(2, 1) equals 75.4/9, not an integer. Thus, t + 1 = 6, v = 105,
and all local spaces L, look like the Fischer space F. There are 28 big quads,
and each big quad intersects 15 others. The Fischer space on the big quads
has 28 points and 6 3-lines on each point. By Buekenhout [9] (or Fischer
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[12]), this can be nothing but (§), the Fischer space of the transpositions in
Sym(8). Having identified the big quads with pairs from an 8-set such that
intersecting quads correspond to disjoint pairs, we see that each point
corresponds to a complete matching, and since there are as many points as
complete matchings, each matching occurs. This identifies the near hexagon
as the H; of Section 5, and we have case (ix) of the theorem.

Big 27-Quads

Now suppose that (X, L) has at least one 27-quad. We may assume that
6 <t <19, and we have v = 27(2t — 7).

Suppose t+1>12. If L, contains a 5-Line, then each Point outside is on at
least (t — 10)/2 5-Lines, which proves that every line that meets a 27-quad is
contained in a 27-quad. Since we are assuming that there is at least one 27-
quad, it follows that every line is in a 27-quad. If ¢t + 1 = 13, then all local
spaces L, must contain three 5-Lines on a fixed Point, and 16 3-Lines, so
that the total number of 15-quads equals

16v/15 = 16272t — 7)/15 = 16.27.17/15,

which is not an integer. Consequently, t + 1 # 13. If some line L is contained
in all 27-quads it meets, then for xe L we see that the Point L of L, is
contained in all 5-Lines, and it follows that there are precisely three 5-Lines
on L, and that ¢ +1=13, impossible. Thus, for any flag (x, L) we can find a big
quad on x not containing L. (This immediately implies that the group G
generated by the involutions oy for big quads Y is vertex-transitive: it suffices
to show that two collinear points y,z are in the same G-orbit, but if
L = {x, y, z} is the line joining them and Y a big quad on x but not on L, then
oy moves y to z. However, we will not use the vertex-transitivity of G.)

Each Point of L, is on at most two 5-Lines. For suppose ueL, is on at
least three 5-Lines L, M, N. Since t+ 1 # 13, we can find a Point
v¢ LuM U N. Each of the four Lines joining v to the four Points of L\ {u}
must meet L, M, N, {v} in distinct Points, hence is a S-Line. Thus, v is on
at least four 5-Lines. All lines not on v meet each of these and hence are
5-Lines, too. But then L, = PG(2,4) and 1 + 1 = 21, contrary to assump-
tion.

Since each Point is on at least (t — 10)/2 5-Lines, we have t < 14.

The Aschbacher Near Hexagon

If t+1 = 15, then each Point is on precisely two 5-Lines and there are six 5-
Lines. We see that all local spaces L, are isomorphic to the linear space
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obtained by taking as Points the points of a GQ(2,2), and as Lines the 15
lines and 6 ovoids of this generalized quadrangle. We find v=567, and the
near hexagon has 6.567/27= 126 big quads. Let A be the graph on the big
quads, adjacent when they have nonempty intersection. Then A is locally the
collinearity graph of GQ(4,2) and has p = 27.2/3 = 18. A nontrivial block of
A for the Fischer group G cannot contain a Fischer 3-line since distinct points
of A have different neighbourhoods in A (cf. Buekenhout [9, Prop. 13] or
Fischer [12, §2]), and it cannot contain a Fischer 2-line since for each vertex a
of A the stabilizer G, is transitive on its neighbourhood A{a). Hence G acts
primitively on A, and by Buekenhout [9, Prop. 16, 17], and the main theorem
of Fischer [12] it follows that the Fischer group must be Og (3). Consequent-
ly, we may identify the big quads with the points x in PG(5,3) for which
Q(x) = 1, for a fixed quadratic form Q with Witt index 2; the 3-lines (of the
Fischer space on the big quads) correspond to tangent lines, the 2-lines to
elliptic lines. Each point of the near hexagon lies in 6 big quads (and these big
quads meet each other so are joined by 2-lines), so points of the near hexagon
correspond to orthonormal bases in the geometry. (Note that the elliptic lines
have two points x with Q(x) = 1 and two with Q(x) = — 1; the first pair and
the second pair are both orthogonal.) Since there ae exactly 567 orthonormal
bases, these are all the points. Thus, we have identified our near hexagon with
the geometry that has as points the orthonormal bases, and as lines the
orthonormal sets of size 2 (with inclusion as incidence). This is example (iv).
We have t + 1 # 14, since there is no suitable linear space on 14 points.

The Hall Near Hexagon

If 4+ 1=12, then the local spaces L, are all isomorphic (to a uniquely de-
termined space L with three 5-Lines, nine 3-Lines and nine 2-Lines). We find
v = 405, and the near hexagon has 3.405/27 = 45 big quads. Let A be the
graph on the big quads, adjacent when they have nonempty intersection.
Then A has valency k = 2.27/3 = 18, and any two adjacent vertices of A have
/=3 common neighbours. Any two nonadjacent vertices have either 9 or 18
common neighbours. [Indeed, let 0 and R be two disjoint big quads. Each of
the 27 lines meeting both lies in either one or two big guads. But it is not
difficult to see that the stabilizer G, » of Q and R in the Fischer group G acts
transitively on these 27 lines, so that we always have the same case, and
(0, R) = 27/3 or 2.27/3.] It follows that A is the 3-coclique extension of the
collinearity graph of GQ(2, 2). There is (up to isomorphism) a unique way to
turn A into a Fischer space, and it follows that we may identify the big quads
with the isotropic points of weight 2 in a Ug(2) geometry with standard form
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T x;¥?, such that the Fischer space structure is preserved. Each point of the
near hexagon lies in three big quads, corresponding to pairwise orthogonal
points in the Ug(2) geometry, and distinct points of the near hexagon yield
different triples of mutually orthogonal isotropic points of weight 2. But there
are precisely 405 such triples, so that we have located the points. The lines of
the near hexagon that are in two big quads correspond to the pairs of
orthogonal isotropic points of weight 2. Two points {a, b, ¢} and {a,d, e} are
collinear if and only if (b, ¢) N {d,e> # . [Indeed, let {a, f, g} be the third
point of this line. Then {b,c,d, e, f,g} induces a Fischer subspace of A, and
from this our claim follows by a simple computation.] Thus, we have
identified our near hexagon with the geometry that has as points the maximal
totally isotropic subspaces of the Ug(2) polar space that contain a weight 2
vector, collinear when they meet in a line. (The 45 27-quads, the 405 9-quads
and the 243 15-quads are the isotropic points of weight 2, 4 and 6,
respectively.) This is example (v).

There remain the cases with 7 <t + 1 < 11. We shall show that if no 15-
quad occurs then ¢ + 1 =9 (indeed, if L, does contain a 5-Line but does not
contain 3-Lines, then any two points off a 5-Line are joined by a 5-Line, and
hence ¢t + 1 =9 and there are two 5-Lines) and there is a unique example—
see the next section. There are no examples with a 15-quad, as we show now.

Consider a 15-quad R. We have |R|=15 [I'|(R)]=30t—-2) and
|T(R)| = 24(t — 6). There are 12(t — 6)(t + 1) lines meeting I')(R), and hence
(30(t — 2)t — 12(t — 6)t + 1))/3 = 6t + 24 lines are contained in I'y(R). For
x€R, let ng, be the number of lines L contained in I'((R) and such that
xengL. Then (for fixed R)

Z nR'x = 3(6t2 + 24)
xeR

so that i, the average of ng _, over all incident pairs (R, x) equals §(:* + 4). On
the other hand, we can compute ng, in the local space L,: Let m; be the
number of i-Lines in L, meeting the Line R in a Point. (Of course m;
depends on the pair (R, x) under consideration.) Then

nx'x = 2(m2 + 4m3 + l6m5).

We shall derive a contradiction by first showing that the average over all R
on x of m, + 4my + 16ms is at most $(z* + 4) for all points x, and then
treating the case of equality.
If the local space L, does not contain any 5-Lines, then
m, + 4my < 2(m, + 2my) = 2.3 — 2) < (t* + 4)

with equality if and only if ¢ = 6 and L, is the Fano plane.
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If the local space L, contains a single 3 Line S, then the two Points of
RS are each on r ~ 6 3-Lipes distinct from R and on 10 — ¢ 2-Lines The
Pomnt R~ S must be on at least one 2-Line when ¢ 18 odd. Thus, writing
t = 2[t/2] + & we have

my + dimy + 16mg < 210 - 1)+ e + Y1~ 6)
cdE-6-a) + 16 =8 - 24 - st + 4)

with equality if and only f 1 = 6.

If the local space L, contamns two S-Lines, then 1 =9 or ¢ = [0, Fort =9 we
find tfor the unique possibility for L) m, + dmy + 16m, = 7 + 43 + 162
=51 =485 For t = 10 any such local space L, has nine 3-Lines and eight 2-
Lines. For one choice of R (the third Line on the mntersection of the two
5-Lines) we find me, +dm, + 16m,=0+4.8+ 162=64 For the other eight
choices of R we find my +4m, + 16m,=4+4.6+16.2 =60 Thus, the average
18 (64 + 8 60)9 which 18 smaller than 3. 104,

Summarizing: in all cases the average of m, + 4m, + 16m, over all R on x
1% too small, except 1n the cases 1 = 6 and 1 = 9.

If1 = 9, there are two possible types of local spaces: the first has two 5-Lines
and four 3-Lines, the second has 2-Lines only. Thus forces adjacent vertices
to have somorphic local spaces, so by connectivity of I we always have the
same lype. Since we are assuming that a 15-quad occurs, this s the first
type, but then the total number of 15-quads if 4v/15 = 427.11/15, not an
integer. Thus 1#9

If £ =6, there are three possible local spaces: the first has one 5-Line and
one 3-Line, the second 1s the Fano plane and the third has 2-Lines only. As
before we conclude by connectivity that all local spaces have the same type,
and since we are assuming that there is a 27-quad, this is the first type. Now

a Fischer space on § points with 3-lines only. No such Fischer space exists.
Thus settles the case where a 15-quad occurs.

No 15-Quads

Now suppose that 27-quads do occur, but 15-quads donot. Thent + 1 = 9
and each point is on two 27-quads (and sixteen 9-quads). We have v = 243,
and the 18 big quads fall into two families R and S of size 9, each partitioning
X. Each quad from one family meets each quad from the other family in a
Iine. {The corresponding Fischer space is the disioint umon of two affine
planes of order 3) Since each line 1s contained in a big quad, and the maps
@s.r: S -+ T (for disjoint big quads S, T) defined by ¢ ;(s) ~ s are isomorph-



364 A.FE. BROUWER ET AL.

isms (preserving membership in a big quad R from the other family), the near
hexagon (X, L) is completely determined by one big quad from each of the
two families, together with the spreads induced in each by intersecting it with
the members of the other family.

But a spread in GQ(2, 4) which is an affine plane of order 3 when regarded
as a Fischer subspace dualizes to an ovoid in GQ(4,2) on which the
pyperbolic lines induce the structure of AG(2,3) In the representation as
1sot¥opic points and totally isotropic lines of U(4,2%) such ovoids are the
sections with nontangent planes, and all are equivalent under Ui4, 2). Thus,
we have a unique choice for the spread in GQ(2,4). and hence the near
hexagon is uniquely determined. This is example {vi).

No Big Quads

In order to complete the classification we have to treat the case where all
quads have size 9 or 15, and there is a 15-quad Q and a point x such that
d(x,0) = 2.

The ¢ + 1lines on x are contained in the 5 quads {x, y) with ye 0 T(x),
and each of these quads contains either two or three lines on x, so

10Kt +1 <15,

and x is in t — 9 15-quads (and in 14 - ¢ 9-quads) meeting Q.

If t +1=15, then we see in L, that any Line disjoint from a 3-Line
is itself a 3-Line, and it quickly follows that all Lines are 3-Lines. But then
all quads on y, and, by connectivity, on any point, are 15-quads, contrary
to assumption. Thus ¢ + 1 # 135,

Next, let us show that there are constants a and b such that each point is
contained in a 15-quads, and in b 9-point quads. Indeed, let the point pbeina
resp. b quads of each type. Counting points around p we find

v=1+ 20+ 1} + (8a + 4b) + [I'5(p}i.
Counting pairs of Points in the local space L, we find
3a+b=14t + 1)
Counting lines meeting I 5(p) we find
LCy(p)l(e + 1) = 8alt — 2) + db(t — 1) = (Ba + 4b)t + 1) — dt{t + 1),
so that |I"s(p)l = 8(2a + & — t). Combining these equations we find

y =472 — 2t + 3 + 4b,
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so that g and b can be expressed in terms of v and ¢ and are independent of the
choice of p.
The total numbers of 9-quads and 15-quads are now

Ny =—91-bv and N, =1—1§av.

In particular, these numbers are integers.

Another divisibility condition is obtained by counting quads meeting @ in
a single point. Indeed, let y and z be two noncollinear points of Q. The graph
with as vertices the 15-quads meeting Q in y or z only, where Q’ is adjacent to
Q" ONnQ #0nQ"and |Q'n Q"] = 1, is bipartite and regular of valency
t — 10. Since the noncollinearity graph of Q is connected, it follows that if
t > 10 then the number of 15-quads Q' with @ n Q' = { y} is independent of
the choice of ye Q. But the total number of 15-quads meeting Q in a single
point is 3(t — 9){I",(Q)|. Thus:

If t > 10 then the number of 15-quads Q' with Q N Q' = {y} equals
ot — NHQ)| for each yeQ. In particular, this number is
integral.

Since |Q| = 15 and |I"}(Q)] = 30(t — 2), we have
[C5(Q)] = 4t — 2)(t — 6) + 4b.

The conditions found thus far allow the following 15 possibilities for the
parameters. Each of these will be ruled out below.

t a b v ITAQ) tho (t—~NT2(Q)  Nys  Ruled out by
9 2 39 465 240 0 62 B
9 5 30 429 204 0 143 B
9 7 24 405 180 0 189 C
9 10 15 369 144 0 246 C
9 12 9 345 120 0 276 C

10 9 28 495 240 2 297 B

10 15 10 423 168 /5 423 D

11 2 60 705 420 7 9% A

17 45 645 360 6 301 A

11 12 30 585 300 5 468 B

11 17 15 525 240 4 595 E

12 6 60 795 480 12 318 A

12 16 30 675 360 9 720 A

13 6 73 945 600 20 378 A

13 21 28 765 420 14 1071 A
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A. Let i; be the number of 15-quads on the line L. Then
2 =3+ 1y,
L
Z iL= ISle = av,
L

and

> inliy — 1) = Nys(Sla — 1) — 5t — 9IF Q).

L
The inequality X, (i; — 3a/(t + 1))* > 0 reduces to

3a

%(a_l—ﬁﬁ(t—-%lrz(Q)l)“'1>t+1

and rules out six of the above cases.

B. The set H=QuT(Q) is a geometric hyperplane (cf. Brouwer and
Wilbrink [8, §(b)], and hence H meets any other 15-quad @' in either all of Q'
or in a 9-point subquadrangle or in three concurrent lines. It follows that
|0’ " T'5(Q)le{0,6, 8}. Let there be n; 15-quads Q' with |Q’ n I',(Q)| = i. Then

ne + ng + ng = Ny,

6ng + 8ng = a.|T',(Q),

ng =1+ 5(a—1)— #4( — 9TAQ)-
The resulting inequality

$a|THQ) < Nys— 1= 5(@ — 1) + 4z (t — 9TA(Q)l

rules out four more of the above cases.

C. If t = 9, then no two 15-quads meet in a single point, i.e. in each L,, no
two 3-Lines are disjoint. But any collection of triples pairwise intersecting in
one point either has a common point, or is a subcollection of the set of lines of
a Fano plane. Thus, a < 7. Now suppose a = 7. Each local space L, is a Fano
plane together with three Points that are only on 2-Lines. Thus: each point
pis on seven lines L that each are in three 15-quads and three 9-quads, and on
three lines L that each are on nine 9-quads. We have (in the notation of B
above):

n0+n5+n8=189
6ng + 8ng = 1260
ny =31 + ¢,

where ¢ is the number of 15-quads in I'y(Q). The only solution in nonnegative
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integers is € = 0, ny = 31, ng = 2, ng = 156. Now consider points ze I',(Q)
such that the line zz' is in three 15-quads, where =’ is the point of Q collinear
with z. There are 120 such points z, 8 for each choice of z'. The four 15-quads
on z not meeting Q each meet I',(Q) in three lines concurrent in z. Hence
ng = 4.120 = 480. Contradiction. Thus, t # 9.

D. Count 9-quads meeting Q in a single point. We find

}(14 — 1)|T,(Q)| < 15b.

This rules out the possibility (¢, a) = (10, 15).

E. Remains the case (¢, a) = (11, 17). There are four 15-quads meeting Q in
a given single point. Thus, in a local space L, each 3-Line is disjoint from
four 3-Lines, and meets the remaining twelve 3-Lines. Since no Point can be
on more than five 3-Lines, it follows that each Point is on either no or on
five 3-Lines. But the number of Points of the latter kind is 3a/5, which is not
an integer. This contradiction rules out the Jast possibility, so that there are
no near hexagons satisfying the assumptions of this section.
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